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The models of fixed bed catalytic reactors in which catalyst deactivation takes place can be 
significantly· simplified by introducing quasi-steady state and constant-pattern travelling wave 
assumptions. This results in faster algorithms. In the present paper the plug-flow, radial dis­
persion, and well-mixed regions in the series pseudo homogeneous models under the above 
assumptions are discussed. The obtained results are compared with experimental ones in the 
case of hydrogenation of benzene on a nickel catalyst with thiophene as a poison (irreversible 
deactivation). 

Fixed bed catalytic reactors, in which catalyst deactivation takes place, operate in 
unsteady state conditions. Due to decrease of the catalyst activity the temperature 
and the concentration profiles move downstream through the reactor during opera­
tion. If the catalyst activity decreases slowly with time, i.e. the contact time of a fluid 
element in the reactor is small compared to the time of deactivation of the catalyst 
bed, the model is described by a system of stiff equations the solution of which is 
involved. This is why we introduce so-called quasi-steady state approximation. It 
means, that all time derivatives except activity are neglected. This simplification 
in the model equations results in faster algorithms. Further simplification is to 
introduce the assumption of "constant-pattern travelling wave". 

In our previous papers1 - 4 the models of fixed bed catalytic reactors with catalyst 
poisoning under quasi-steady state assumption have been discussed. Pseudohomo­
geneous models have been also studied 1- 3. As a flow pattern the plug-flow I , well­
mixed regions in series2 , and axial dispersion model3 have been chosen. Heteroge­
neous models of well-mixed region in series have been described in the preceding 
paper4. From the comparison of theoretical and experimental results (for the system 
of hydrogenation of benzene on a nickel catalyst with thiophene as the poison) 
the following conclusions can be made: (i) after some period the temperature and 
concentration profiles have constant pattern and move by constant speed down­
stream through the bed, (ii) the maximal temperature is constant, (iii) the deactivation 
rate is temperature independent. 

This fact enables us to introduce the constant-pattern travelling wave assumption, 
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where the constant speed of movement of adsorption zone is given by the formulas 

(1) 

In this paper pseudohomogeneous models described in the preceding papers1.2 
and a model with radial dispersion under the constant-pattern travelling wave 
assumption are discussed. 

In order to simplify theoretical analysis the following approximations have been 
introduced: (i) the gas density is constant, (ii) the heat exchange between catalyst 
and gas is perfect, so the temperature of both of them is the same, (iii) the heat 
released by the chemisorption of the poison is negligible, (iv) the heat of reaction, 
heat capacity, mass transfer, and heat transfer coefficients are temperature inde­
pendent. 

THEORETICAL 

Pseudohomogeneous Model of a Plug-Flow Reactor 

Under the above assumption the model consist of the equations 
mass balance of the key component 

~ aYB + aYB + E = 0, 
aT az 

mass balance of the poison 

entalphy balance 

ae ae . 
Rs - + - = E - F . (e - ee), 

aT az 

boundary conditions 

T > 0 Z = 0 YB = YJ = t, e = 0 , 

initial conditions 

rate equation of the catalytic reaction 

(1) 

(3) 

(4) 

(5) 

(6) 

(7) 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



Modelling of Fixed Bed Catalytic Reactors 47 

and rate equation of the poison chemisorption 

(8) 

If the adsorption rate of the poison is equal for all nonoccupied active sites of the 
catalyst and one molecule of poison is adsorbed on one active site, the linear depen­
dence between catalyst activity and adsorbed amount of catalyst poison can be 
developed 

It yields to the rate expressions 

and 

del> -=cP= -~el>. 
d't' 

(9) 

(10) 

(11) 

Introducing the quasi-steady state assumption (the contact time of a fluid element 
in the reactor is small compared to the time of catalyst bed deactivation which 
results in small values of parameters () and Rs) Eqs (2)-(4) become 

dYB 
-= 
dZ 

dYJ = GcP 
dZ 

and the initial and boundary conditions are given by Eqs (5) and (6). 

(12) 

(13) 

(14) 

If we assume a constant-pattern travelling wave, the transformed time variable 

u = t - zlv (15) 

is useful. The dimensionless transformed time variable is 

U = 't' - (G + (j) Z (16) 

Collection Czechoslovok Chern. Cornrnun. (Vol. 53) (1988) 



48 Marko§, Brunovska: 

which can be further simplified assuming quasi-steady state approximation 

U='C-G.Z. (17) 

The balance equations (11) and (13) transformed into 

dYl = d<1> 

dU dU 
(18) 

d<1> 
- Y1<1> -= 

dU 
(19) 

with boundary conditions 

U=-oo Y1 =0 (20) 

U=oo lJ=1. 

From the Eqs (18) and (19) poison concentration, activity, and variable U can be 
expressed 

<1> = 1/(1 + exp (U» 

U = In ((1 - <1»/<1» • 

(21) 

(22) 

(23) 

Eqs (17) and (23) allow us to compute the activity profile at any time in the catalyst 
bed, or on the other hand, to find the point of given activity in the reactor at a certain 
time. 

To compute the system of model equations for a given time the following algorithm 
has been employed: To obtain the activity profile in the reactor choo$e activity 
from the interval <0, 1), then compute variable U from Eq. (23) and the axial co­
ordinate from Eq. (17). To obtain the key component concentration and temperature 
profiles in the reactor solve Eqs (12) and (14) by the Runge-Kutta 4th order method. 
Once we compute the point with maximal temperature at a given time 'C, the move­
ment of this point we obtain easily using Eq. (17). This equation helps us also to 
compute reactor outlet concentrations. 

Pseudohomogeneous Model with Radial Dixpersion 

Under quasi-steady state assumption the pseudohomogeneous model of fixed bed 
catalytic reactor including radial dispersion term consists from the following system 
of model equations6 : 
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mass balance of the key component 

aYB _ DBa (a2YB + .!:.- ayB ) + .3 = 0, 
az acp2 cp acp 

mass balance of the catalyst poison 

entalphy balance 

boundary conditions 

.>0 

Z = 0 : cp E (0, 1); e = 0; YB = Yj = 1 , 

initial condition 

Z E (0, Za) : cp = 0; ae = aYB = aYJ = 0 
acp acp acp 

cp = 1; aYB = aYJ = 0 
acp acp 

- K a ae = H(e - e ) 
e acp C , 

• = 0 : Z E (0, Za) rfJ = 1 , 

cp E (0, 1) 

reaction rate (Eq. (7», and deactivation rate (Eq. (11». 
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(24) 

(25) 

(26) 

(27) 

(28) 

After introducing the constant-pattern travelling wave assumption and time 
variable U, the equation for catalyst poison can be simplified as in the case of plug­
-flow reactor. The relation between the variables Yj, rfJ, and U is given by Eqs (21) to 
(23). 

To compute the poison concentration and activity profiles one can proceed as in 
the previous case. The axial and radial temperature and key component concentra­
tion profiles have been obtained by solving numerically the system of Eqs (24), (26), 
(27) by the predictor-corrector method. Due to high temperature gradient near the 
reactor wall two different step lengths have been used (smaller near the wall than 
in the middle). 

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988) 



50 

Pseudohomogeneous Model of Well-Mixed Regions in Series 
with Heat Exchange Between the Members 

Markos, Brunovska: 

The model of well-mixed regions in series with heat exchange between the members 
is given by the following equations: 
mass balance of the key component 

(29) 

mass balance of the poison 

d Y.J,i YJ,-t + GKcf>i = YJi + <5K--, i = 1,,,,,N, 
• 'd't" 

(30) 

entalphy balance 

i = 1, .", N , (31) 
boundary conditions 

't" > 0: i = 1; YB,i-l = Y.J,i-l = 1, 8 i- 1 = 0, (32) 

initial conditions 

't" = 0: i = 1, "., N; cf>i = 1, (33) 

kinetic equation of catalytic reaction 

51 = cf>iB(YB,i> 8 i), i = 1, .'" N , (34) 

and deactivation rate equation 

tPi = - Y.J,icf>i' i = 1, ... , N . (35) 

After introducing a constant-pattern travelling wave, the time variable U and quasi­
-steady state assumption, for the poison concentration and activity we obtain 

for i = 1, "., N 

Y.J,i = 1 - cf>1 

U j = In ((1 - cf>,)!cf>i) 

U, = 't" - i. GK 

(36) 

(37) 

(38) 
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v = - 00 for cP = 1 (39) 

and 

V=oo for cP = o. 

The model equations (29) and (31) reduce to algebraic equations. The algorithm of 
the solution of the model equations is as follows: choose time"rI. and activity CPt ~ 0, 
compute V from Eq. (37) and the number of region i* from Eq. (38). For i < i* 
set CPi = 0, for i > i* compute V j from Eq. (38) and CPj from Eq. (37). Increase i 
until unit activity is obtained. To compute the key component concentration and 
temperature profiles solve the Eqs (29) and (31) numerically. 

The movement of the region with maximal temperature we can compute from the 
relation 

(40) 

where V max is value of the variable V corresponding to the number of regions with 
maximal temperature at time "rt . The inlet concentrations can be computed from 
Eq. (38) and from the profile at any time "rI.. 

The system of Eqs (29) and (31) is a system of 2N nonlinear algebraic equations, 
which have been solved by the Newton-Raphson procedure. The number of regions 
N has been estimated by the relation 7 

(41) 

In our case the number of regions has been between 60 and 100, which leads to the 
system of at least 120 nonlinear equations. 

EXPERIMENTAL 

For experimental verification of the described models the benzene hydrogenation on Ni catalyst 
as a model reaction and thiophene as a catalyst poison have been choosen. The experimental 
system as well as the experimental procedure has been described in literatures. 

The rate equation for benzene hydrogenation is 

• kwooKooPB • PH . exp (-(E + Q)/RT) 
c!w = --'-'---l:-'-'+'----=K-oo-"'P'-B-. -ex-p-(---Q----c-/R-T)---

or, in the dimensionless form 

(42) 

(43) 

In all our experiments hydrogenation took place under a large excess of hydrogen, so the hydrogen 
concentration through the entire catalyst bed has been constant, Y H 1'1::1 1. The values ofthe kinetic 
rate equation parameters have been obtained from rotating basket reactor measurements9 
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and their values are: kwro = 0.59.10- 2 molkg- 1 s-1 Pa- 1 ; Kro = 0.29.10- 5 Pa- 1; E= 
= 12·4 kJ mol-I. The experimental conditions are: catalyst diameter 0·7-1·0 mm; mass of 
catalyst 11·64 g; length of bed 0·085 m; inlet temperature 378 K; ambeint temperature 378 K; 
volumetric flow rate 5.46.10- 6 m3 s-l; inlet concentration of benzene 1·89 mol m- 3; inlet 
concentration of thiophene 2.69.10- 2 mol m- 3 . 

RESULTS AND DISCUSSION 

The outlet benzene and thiophene concentrations and the movement of the point 
of temperature peak for individual models and experiment are illustrated in Fig. 1. 
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Comparison of experiment and models. Q Benzene outlet concentration vs time; b thiophene 
outlet concentration vs time; c point of temperature peak vs time. 0 experiment, full line -
model of well-mixed regions in series; dashed line - plug-flow model and model with radial 
dispersion. In place of Z/L should be the expression z/L 
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The corresponding axial mean temperature profiles at time t = 300 min are dis­
played in Fig. 2. The mean experimental temperature is obtained from measured 
temperature in the reactor ceJlter assuming a parabolic radial temperature profile. 

The results obtained for the plug-flow model and the model with radial dispersion 
are not different for parameters corresponding to our experimental system (important 
axial heat conduction). There is also no significant difference between experimental 
outlet concentrations and movement of the point of temperature peak and these 
dependences for all models (Fig. 1). This is not true for axial temperature profiles. 
The best agreement has been achieved for well-mixed regions in series model, which 
includes axial temperature conduction. 

For given parameters the obtained results are not different whether the constant­
-pattern travelling wave has been assumed or not. However, introducing the as­
sumptions of quasi-steady state and constant-pattern travelling wave simplify the 
model equations significantly. In the case of plug-flow and radial dispersion models 
the key component and entalphy balance equations are reduced from partial to 
ordinary differential equations. The poison balance in all cases can be solved analy­
ticaly. This simplification in mathematical model leads to faster algorithm and signifi­
cant saving of computing time. 

FIG. 2 
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Transient temperature profiles. Full line - experiment; dashed line - model of well-mixed 
regions in series; dotted line - plug-flow model and model with radial dispersion. In place of Z/ L 
should be the expression z/L 
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UST OF SYMBOLS 

AJ 

aJ 
at 
C 

Cpg 

cps 

DBR 

DJR 

Dr 

dp 

dt 

E 
F 

Fa 
Fw 
G 
GK 
(-l!.H) 
H 
Iz 
K 
K.R 

kw 
kD 
L 
N 
p 

Q 
R 
Rs 
RSK 
r 

SR 
T 
t 
to 

U 
u 

v 
Vo 
V 

W 

= aJlat dimensionless poison adsorbed amount 
poison adsorbed amount, mol kg- 1 
equilibrium poison adsorbed amount, mol kg - 1 

concentration, mol m - 3 

heat capacity of gas, J kg - 1 K - 1 
heat capacity of solid, J kg -1 K- 1 

= DBrcBole~R2flb dimensionless parameter, see Eq. (24) 
= DJrCBo/l:~R2flb dimensionless parameter, see Eq. (25) 
radial dispersion coefficient, m2 s - 1 

diameter of catalyst pellet, m 
diameter of reactor, m 
activation energy, J mol- 1 
= 4hcBofdtflbe~gCpg dimensionless parameter, see Eq. (4) 
= ASRfflgCp.Vo dimensionless parameter, see Eq. (31) 
= 1thdtL/Nflf.pgVo dimensionless parameter, see Eq. (31) 
= cBoa1le~t cJo dimensionless parameter, see Eq. (3) 
= at WI NCJotO Vo dimensionless parameter, see Eq. (30) 
heat of reaction, J mol- 1 
= cBo/flgCpgR dimensionless parameter, see Eq. (27) 
overall heat transfer coefficient, J m - 2 S - 1 K - 1 
adsorption constant, Pa - 1 
= l.rcBolflgcpIR2e~flb dimensionless parameter, see Eq. e6) 
chemical reaction rate constant, mol kg -1 S -1 Pa- 1 
deactivation rate constant, m3 kg -1 S - 1 
length of reactor, m 
number of well-mixed regions 
pressure, Pa 
adsorption heat of benzene, J mol- 1 
radius of reactor, m 
= (flCp) cBofflgCpgflbe~tO dimensionless parameter, see Eq. (4) 
= (flcp) SRLfNflgCpgtOVo dimensionless parameter, see Eq. (31) 
radial coordinate, m 
section area of reactor, m2 

temperature, K 
time, s 
= IfkOcJo characteristic deactivation time, s 
= ultO dimensionless transformed time variable 
transformed time variable, s 

volume, m3 

volumetric flow rate, m3 S-1 
speed of adsorption zone movement, m s-1 
mass of catalyst in the reactor, kg 
velocity of fluid, m S-1 
= cfco dimensionless concentration 
= flbe~zfcBoW dimensionless axial coordinate 
= flb~~LfcBoW dimensionless lenght of reactor 

W~~L ICBo Vo dimensionless parameter, see Eq. (29) 
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A 

Aer 
(lb 

(lg 

Cls 

<(lcp ) 

axial coordinate, m 
heat transfer coefficient from catalyst bed to reactor wall, J m - 2 S - 1 K - 1 

= E/RTo dimensionless parameter, see Eq. (45) 
= Q/RTo dimensionless barameter, see Eq. (45) 
= (-l:iH) cBo/ClgCpgTo dimensionless parameter, see Eq. (45) 
= eCBO/ClbtO ~~ dimensionless parameter, see Eq. (2) 
= LSR / NVotO dimensionless parameter, see Eqs. (29, 30) 
bed void fraction 
= (T- To) ClgCpg/cBo(-l:iH) dimensionless temperature 
= KooPBo exp (-Q/RTo) dimensionless parameter, see Eq. (45) 

heat transfer coefficient between members of cascade, J m - 2 S - 1 K - 1 

catalyst bed effective thermal conductivity, J m -1 s -1 K- 1 

bed density, kg m - 3 

gass density, kg m - 3 

catalyst density, kg m - 3 

average thermal capacity of reactor, J m - w K - 1 

= t/tO dimensionless time 
reaction rate, mol kg - 1 S - 1 

55 

reaction rate on the fresh catalyst corresponding to the inlet conditions, mol kg - 1 s-1 
= ew/e~ dimensionless reaction rate 
catalyst activity 
deactivation rate 
= r/ R dimensionless radius coordinate 

Subscripts 

o inlet stream 
c ambient stream 
B, J, H key component, poison, hydrogen 
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